

ECONOMICS OF BIODIVERSITY FOR ACCESS AND BENEFIT SHARING (ABS)

Prakash Nelliyat
National Biodiversity Authority
Chennai

Challenges

- Population growth
- Development → Land use Change
- Consumerism
- Increasing pressures on Ecosystem/Biodiversity
- Loss of species and ecosystem (45-250 species loss per day !).

 Biodiversity/ecosystem protection: major environmental policy agenda.

 Current market and legal systems unable to provide clear answers.

Need for clear policy

O Future lies in innovative approach and agenda setting.

Changing Trends

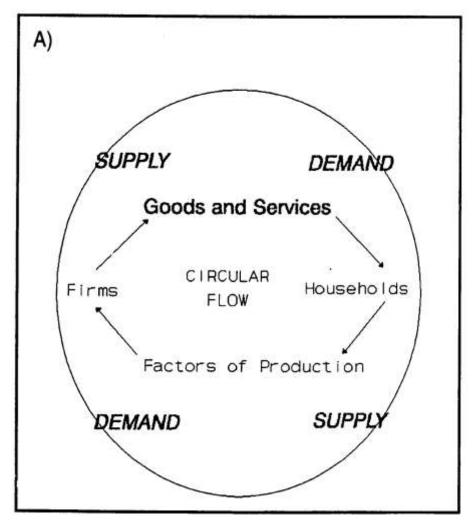
- Environmental concerns overriding development concerns
- Abilities to translate potential of biodiversity and ecosystem services to real
- Science-policy interface being revisited.

Economics and Biodiversity

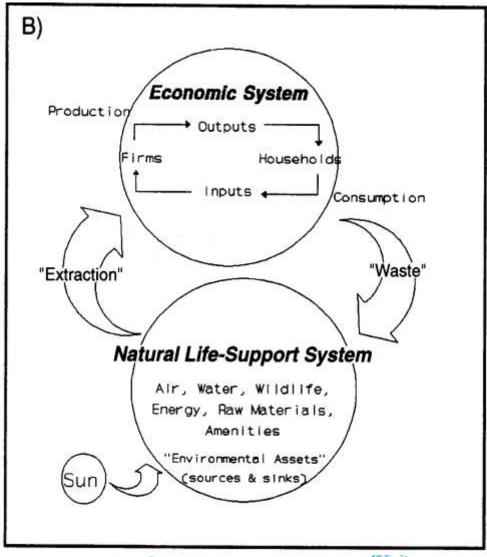
O <u>Economics</u> is a science of analysis of use of limited and scarce resources to achieve human needs. (bio-resources vs increasing demand).

The basic challenge to any economic system is "How the scarce resources should be allocated to get maximum human satisfaction"

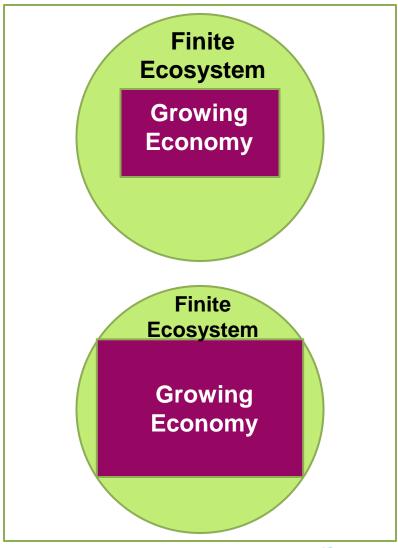
O <u>Environmental Economics</u> provides thoughts for creating an argument and answer to valuing environmental goods and services for human well-being and to protect ecosystems.



THE ECONOMY AS AN ISOLATED SYSTEM



LINKING ECONOMIC AND ECOLOGICAL SYSTEMS



THE ECONOMY DEPENDS ON ECOSYSTEM / BIODIVERSITY

What are we doing in EE?

- → Valuation
- → Damage assessment
- → Economic instruments:
 - * compensation
 - * subsidies
 - * taxes
 - * royalties
 - * fines etc.

- O For biodiversity conservation, one should find Innovative Approach: Access and Benefit Sharing (ABS)
- O Overall challenge: How to operationalize ABS principles using Economic instruments?

Biodiversity: Economic Significance Vs Market Failure

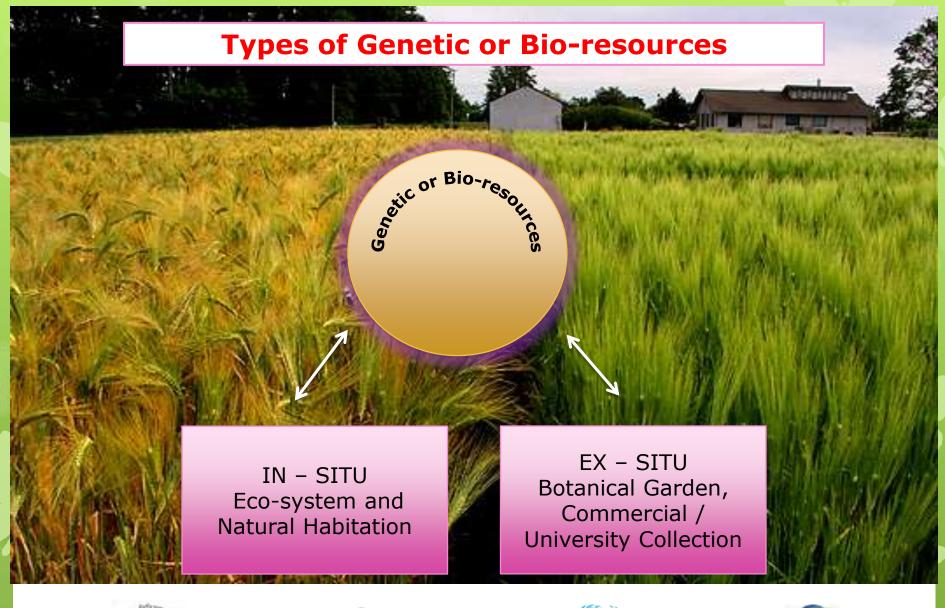
- Globally more than 1.3 billion people depend on biodiversity and on basic ecosystem goods and services for their livelihood (CBD, 2012)
- Biodiversity goods and ecosystem services are prospected but in an unorganized manner
- Reason: There are no defined market or economic instruments for biodiversity and ecosystem services.

Challenges

- In Biodiversity supply, demand and price mechanism do not function properly
- Biodiversity values are implicit in general rather than explicit (often not captured by markets).
- Most of the biodiversity are in common land
- Property rights of biodiversity are not clearly defined.
- The right in biodiversity / bio-resources is not protected
- Excluding others from using the good is not possible and hence rights based approach is difficult.

• In biodiversity case market failure exists

• Result: Over-extraction of bio-resources and extinction


Linkages Between Biodiversity and Bio-resources Bio-resources Biodiversity Medicinal plants Honey Forests Timber Water body Fish Paddy fields Fruits Garden Grains Seeds

Bio-resources: Property Rights

Bio-resources

Natural Environment

Common land / property

- Forest
- River systems
- Estuary
- Ocean
- Market distortion
- Products under-valued
- Current price cant act as an incentive for conservation

Man-made Environment

Private land / property

- Paddy fields
- Garden (vegetables, fruits, flowers etc.)
- Aquaculture
- Livestock
- Market is strong
- Price determination based on the cost of production
- Prices act as incentive

ABS an Emerging Option for Biodiversity Management and Innovative Financing

ABS framework provides guidance for the way in which genetic resources are accessed, and the way benefits are shared between people or countries using the resources (users) and the people or countries that provide them (providers).

The negotiation between a provider and a user of resources should be (monetary / non-monetary), based on the <u>true/actual value</u> of the resources.

ABS can:

- (i) ABS balances the rights of uses of bio-resources with the rights of provider of such resources.
- (ii) Enable that biodiversity is managed as a community good

(iii) Support biodiversitybased **businesses and ecosystems in a sustainable manner**

• ABS acts as an **economic incentive** in conservation and sustainable use of biodiversity (local community or providers of bio-resources obtain fair share of the benefits attain its production).

O Economic valuation of biodiversity and biological resources is an important tool for well-targeted and calibrated economic incentive measures (CBD).

CBD and Biological Diversity Act: Objectives

Fair and equitable sharing of benefits

Sustainable use

Valuation of Biodiversity and Ecosystems

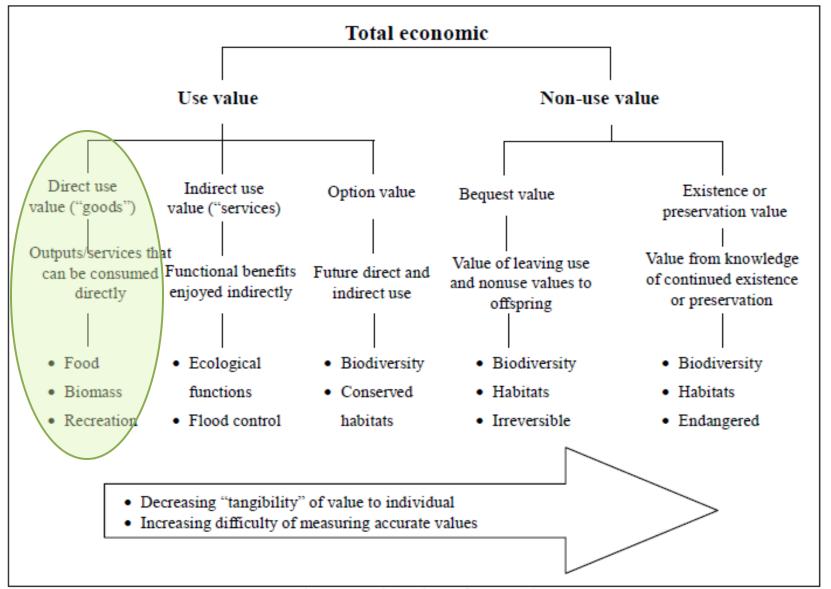


Fig. 1 Total Economic Value of Coastal Resources

Annual Economic Value of Forests of Himachal Pradesh (as per 2000 prices)

Category	Goods and Services	Physical Value	Monetary value (Rs. Crore)
Direct Consumptive benefits (A)	1.Salvage	3.50 lakhs m3	32.00
	2.Timber for right holders 3. Fuel-wood	1.06 lakhs m3 27.60 lakh tons	60.00 276.00
	4.Fodder	92.0 lakh tons	690.00
	5.Minor forest produce	1161.56 tons	25.00
			1083.00
Direct Non-consumptive benefits (B)	6.Eco-tourism	66.56 lakh - Tourists	6657.00
Total Direct Benefits (A+B)			7740.00
Indirect Benefits (C)	7.Watershed	6.77crore m3 - Growing stock in river Basin Forest Circle and 36986 km2 - entire forest area	73972.00
	8.Microclimatic Factors	969018 Households	145.00
	9.Carbon Sink	14346 km2 - Area under tree cover and scrub forest	17645.00
	10.Biodiversity / Endangered Species	8966- Total no. of species found in Himanchal Pradesh & 125 - Endangered species	7137.00
	11.Employment Generation	48.40 Man days	25.00
Total Indirect Benefits (C)			98924.00
Total Economic Value (A+B+C)			1,06,664.00

Source: Madhu Verma (2000)

Valuation Methods

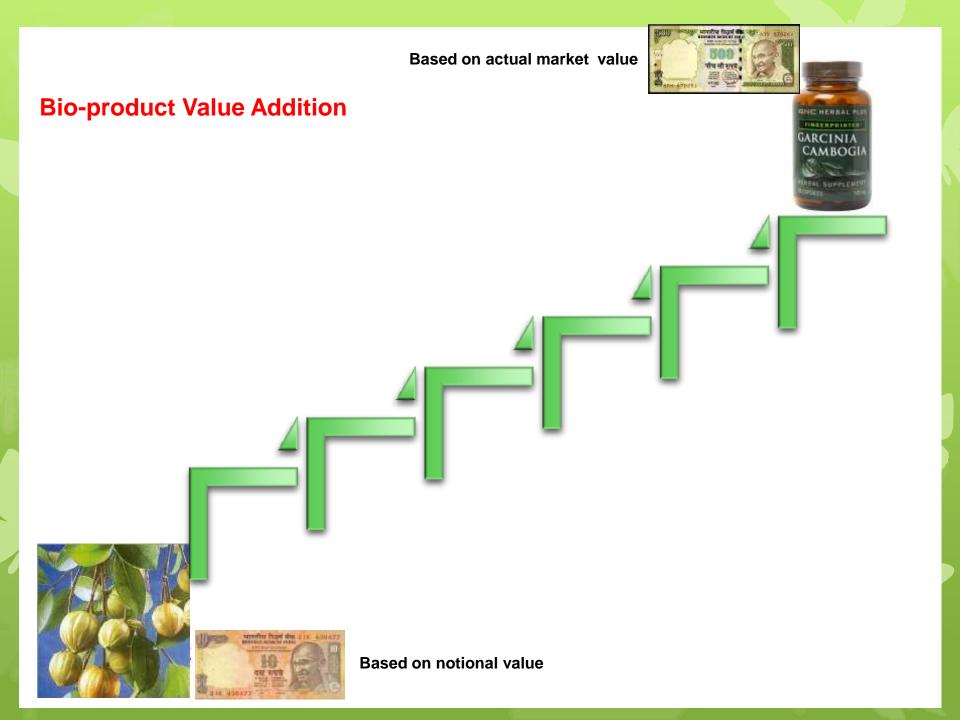
Ecosystems

- Market prices
- Replacement costs
- Damage cost avoided
- Production function
- Hedonic price
- Travel cost and
- Contingent valuation
- Participatory env. valuation
- Benefits transfer

Bio-resources

Value Chain and Production Function Analysis

Value chain refers to coordinated relationships between actors who are involved directly and indirectly in a <u>productive</u> <u>activity</u>, with the aim of taking a product from <u>supplier</u> → manufacturer → wholesaler → retailer → consumer



Forest Resources Valuation for ABS

- Forest resources are used for manufacturing different consumer products
- Resources are having markets
- But at forest gate market is weak (imperfect or inefficient),
 Price is low
- However many value added products are derived from forest resources
- Value addition: through transaction costs or and processing / manufacturing costs
- **→** <u>Transaction costs</u>

Price of Certain NTFP (Rs/Kg.) from a Protected Area: Kerala

NTFP items	Collection price at forest gate	Sales price of the Federation	Final consumer price	Price spread	Collection price as % of final consumer price
Honey	119	133	200	81	59.5
Honeywax	80	135	203	123	39.4
Kalpasam	51	85	128	77	39.8
Cheevakkai	9	11	16	7	56.3
gooseberry	5	5	8	3	62.5
Kakkumkai	5	7	10	5	50.0
Atthithippali	10	16	24	14	41.7
Kunthirikkam	30	39	58	28	51.7
Kudampuli	74	110	165	91	44.8
Pachottitholi	11	13	19	8	57.9

Source : Shylajan and Mythili (2007)

→ Processing / Manufacturing Costs

- Certain forest resources may act as basic raw-material for manufacturing final products
- Eg: *Jeevani* an immuno-modulatory product (ayurvedic medicine) is manufactured from the plant known as *Arogyapacha*

- Arogyapacha is an unavoidable input, but not an exclusive one
- Many other products and knowledge/skill (research and development) also attribute to such development
- Amortised (Remunerated) pricing technique is relevant to estimate the real price of bio-resources.

Bio-resources real price estimation: basic/general steps

Steps	Tasks	Sources of Information
First	Identification of the key bio-resources (having economic and ABS potential) extracted from a geographical area / ecosystem	BMC, PBR, local community, indigenous group, forest department
Second	Understand its potential / purpose / usage	BMC, traders, research organizations, government departments, industries
Third	Identify its leverage / movements: local → regional → state → national → international	BMC, traders, industrial association, companies, exporters, customs department
Fourth	Prioritize the promising uses based on value addition (ranking)	Industries, traders, research organizations.

Bio-resources real price estimation: specific steps

Steps	Tasks	Sources of Information
First	Select any manufacturing or bio-resources processing company	Appropriate industry
Second	Estimate the transaction cost of bio-resources: from forest gate to company gate. (Price at company gate – price at forest gate)	Forest dwellers, traders, industries
Third	Identify the major production steps	Company management and production manager
Fourth	Identify the different factors of production involved in each stage and its cost / remuneration (Factor cost method)	Company management, production manager and labourers
Fifth	Identify the abnormal benefit claimers and rates (differences between company rate with general market rate)	Company management, production manager, labourers, industrial/govt. departments.
Sixth	Fix the optimum benefit and share the surplus to local communities who preserve the bio-resources (Royalty; institutional mechanism for distribution)	Company management, production manager, labourers, industrial/govt. departments and BMC

Therefore

• Biodiversity conservation, management and sustainable use is critical for **stable economic development**.

- Biodiversity Economics need to studied and understood well
- Economic incentive is an option ABS is an emerging principle.
- O Understanding the real/true value of bio-resources is a pre-requisite for benefit sharing and ABS agreements.

Photo set1: Various animal species

Photos from biskitz4dhez 2004, and A.M. Okeyo, ILRI

- The market for bio-resources is highly imperfect or inefficient, hence not able to fix the equilibrium price.
- The existing price for bio-resources at forest gate or any other collection point is **not the true VALUE**
- Valuation is an important policy tool: to fix benefit sharing and signing ABS agreements
- ABS is an internal financial source and incentive mechanism for preserving biodiversity.
- Reliable database is a **challenge** and accuracy of the value is always **debatable.**
- NBA is currently working on methodology for bio-resources valuation.

Thank You

